

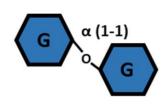
Match Maker/ Sustainable Ingredients/ 3 Feb 2023

Novel process for the manufacturing of Trehalose, a high-value rare sugar

Lead Inventor: Dr. Sudhir Singh, FNAAS

Organization: CIAB, Mohali

TechEx.in Case Manager: Pradnya Aradhye (pradnya@venturecenter.co.in)


TechEx.in is a Regional Tech Transfer Office supported by:

Trehalose

Food industry

- Reduction of freezing point of food product, prevention of the formation of ice crystals and freeze-thaw damage
- Stable in a wide range of pH
- Prevents starch aging
- Water retention capability
- Extended shelf-life of food products
- Maintains the polyphenolic content and antioxidant properties
- less cariogenic
- Low sweetness with a clean finish, and can improve food flavor and quality
- Daily intake of 10 g improves glucose tolerance, mitigates insulin resistance

Pharmaceutical industry

 Stabilizer of the cell membrane and proteins; cryopreservation of sperm and blood cells

Cosmetic industry

- A moisture-retaining agent
- Helps in reducing the human body odor by degrading unsaturated fatty acids

- ◆ Frozen food applications
- ◆ Pharma
- Personal care products

Limitations in industrial production

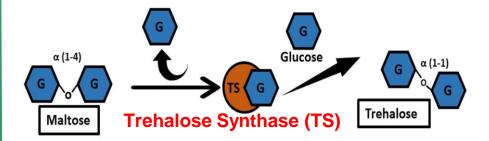
- Poor thermal stability of enzyme
- Low product yield

The Opportunity

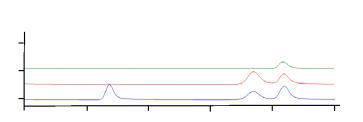
The global trehalose market is predicted to grow form USD 240 million in 2021 to about USD 330 million by 2029 at a Compound Annual Growth Rate (CAGR) of 5 percent during the forecast period 2019-2029.

- 1) Healthy option, offers health benefits (Food and beverages)
- 2) Prevents protein denaturation (frozen meat, fish)
- 3) Offers skin protection and provide nourishment (creams and shampoos)
- Price ~ INR 1000/kg (depends on quality and purity)
- ◆ Major global suppliers: Hayashibara Co., Ltd, Life Sciences Advanced Technologies, Cargill Inc, Shanghai Danfan Network Science & Technology Co., Ltd, Sika(China), Otto Chemie, Profoods, Van Wankhum (Netherlands)
- No manufacturer in India

Who should be interested and why?


Who?	Why?
Frozen food products industry	 No imports required Ingredient with good performance Expansion of the product portfolio
Pharma industry	Good quality trehalose as no contaminants are produced in enzymatic conversion
Suppliers to FMCG, beauty care products	New products and forays into new markets

About the technology


Process technology features:

- Cost effectiveness
- ◆ Low cost starting material
- Efficient enzymatic conversion
- ◆ High thermal stability of enzyme
- ◆ Ample raw material available
- ◆ Scalable process
- ◆ Dual catalysis

Enzymatic conversion of Maltose to Trehalose

Maltose to Trehalose conversion (> 70%)

Expression of Trehalose Synthase (TS) in *E. coli* cells

Culturing of cells in LB medium at 37°C, 100 rpm for 24 h

Enzyme extraction and purification

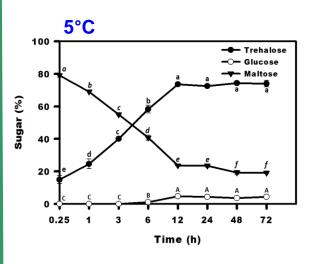
Cells harvesting by centrifugation. The cell pellet is suspended in 50 mM Tris buffer of pH 7, containing 300 mM NaCl, followed by disruption of the cells by sonication for 3 min. Chromatographic separation of enzyme (TS) from cell lysate.

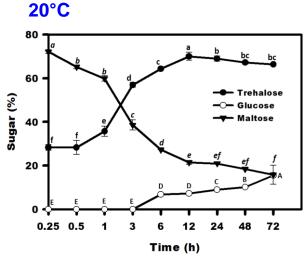
Enzymatic reaction

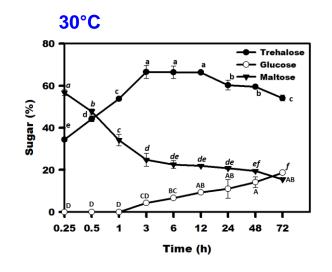
Maltose solution (100 g/L) + Enzyme (50-100 mg / L)

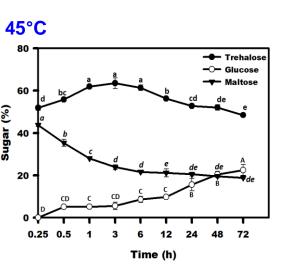
pH 6-7; Temp 30°C Incubation time Approx. 3 h

Maltose to Trehalose conversion ~70%




Simulated moving bed chromatography for separation of Trehalose


Hayashibara vs CIAB Technology


<u>Organism</u>	Optimum pH	Optimum temp (°C)	Trehalose Yield(%)	Trehalulose Yield (%)	<u>Thermostability</u>
Pimelobacter sp. R48	7.5	20	81.8% at 5°C in 48h	-	40% (40°C, 60 min)
Pseudomonas putida H262	7.5	60	75% at 20°C in 24 h	•	NR
Thermus aquaticus (ATCC 33923)	6.5	65	80.7% (40 °C) in 48h	81% (40 °C) in 96 h	90% (80°C, 60 min)
(CIAB Technology)					
Hot spring metagenome Source: unknown 88% identity to uncharacterized protesequence from Thermanaerothrix day		5-45°C	52% (45 °C) in 15 min; 60% (45°C) in 1 h; 66% (30 °C) in 1 h; 70% (20 °C) in 12 h; 74% (5°C) in 12h	~85% (50 °C) in 12 h	80% (45°C, 120 h); 60% (50°C, 120 h); 50% (60°C, 96 h)

CIAB technology offers enzymatic biosynthesis of Trehalose at wide range of temperature (5 to 45 °C)

Current status

Technology status:

- ❖ Demonstrated at lab scale (1 L)
- ❖ Sample available
- Patent filed

Patents:

- ❖ Priority document: : A process for the production of trehalose and trehalulose employing a novel trehalose synthase from thermal spring metagenome. Indian Patent Appl. No. 202111022212 (May, 2021)
- ❖ Coverage: IN
- Approved: Pending

Publications:

❖ Agarwal N, Singh SP (2021) A novel trehalose synthase for the production of trehalose and trehalulose. *Microbiology Spectrum* 9: e01333-21 (IF 9.043)

Next Steps

- ◆ The CIAB team has invented a new process for the production of trehalose. The process has been demonstrated at lab scale.
- ◆ The next steps are to identify an industrial partner for codevelopment of the technology involving process optimization, develop purification methods, scale up to pre-commercial levels, carryout detailed testing and produce trial quantities for customer inputs.

Seeking:

- Industrial partners interested in technology licensing
- Industrial partners interested in sponsoring further technology advancement and scale-up
- ❖ Industrial partners interested in raising 3rd party funds for a collaborative project.
- Industry interested in tapping scientist capabilities as an expert/ consultant.

Team and Organization

Lead Scientist:
Dr Sudhir Singh, FNAAS
Scientist-D, CIAB

Fellow, National Academy of Agricultural Sciences, India
Member, National Academy of Sciences, India
HIRALAL Chakravarty Award (ISCA, DST)
Gandhian Young Technological Innovation Award to the team, SRISTI
Young Scientist Award, IBA (France)
SBS-Madurai Kamraj Univ Genomics Award, BRSI

Track record of tech transfer to industry

Expertise: Gene mining, biocatalyst engineering, bioprocessing, bioproduct generation and enzyme characterization

Center of Innovative and Applied Bioprocessing, Mohali

- ◆ CIAB is an autonomous institute of DBT, India
- Key assets and strengths of the team:
 - ◆ 10 Indian patents filed, 8 granted. More than
 45 publications in bioprocess, enzyme characterization and functional biomolecules.
 - Well equipped labs and analytical facilities
 - ◆ 5 L fermenter
 - ◆ HPLC and Gas chromatography
 - Enzyme characterization assays
 - Protein Purification system
 - Membrane separation unit
- Industry project/ tech transfer
 - Track record of technology transfer and working with industry; attractive models of engagement and flexible terms for IP

For more information, contact:

Pradnya Aradhye pradnya@venturecenter.co.in +91-88050-09010

TechEx.in is a Regional Tech Transfer Office supported by:

