





Match Maker/ Renewable Chemicals & Materials/ 16 Apr 2021

# Microbial cetearyl alcohol for cosmetic & pharmaceutical applications

Lead Inventor: Dr Syed Shams Yazdani

**Organization: ICGEB** 

TechEx.in Case Manager: Pradnya Aradhye (pradnya@venturecenter.co.in)

TechEx.in is a Regional Tech Transfer Office supported by:



# What is Cetearyl (Cetostearyl/Cetylstearyl) Alcohol ?

#### Synonyms:

- Cetostearyl alcohol
- Cetylstearyl alcohol
- C 16-C 18 alcohol

#### Forms:

- White waxy solid
- Liquid

## Usage and price:

- Used < 3-5% in formulation
- Wholesale > Rs 110-150/kg

## By sources:

- Synthetic
- From animal sources
- From plant oils
- Microbial

#### Mixture:

- Cetyl (C 16) alcohol or hexadecan-1-ol
- Stearyl (C 18) alcohol or octadecan-1-ol

#### Uses:

#### • Opacifying agents (ex shampoos)

- Emollient or moisturizer
- Emulsifier
- Viscosity agent/ thickener
- Lubricant

## C16 alcohol at RT:

Waxy white solid or flakes

## Sources of C16 alcohol:

- Whales
- Palm oil, coconut oil

#### **Commercial mixtures:**

- C16:C18 is 50:50 (most common)
- C16:C18 is 30:70
- C16:C18 is 70:30

## Industries:

- Food Industry
- Cosmetics Industry (skin creams/ lotions)
- Pharmaceutical Industry as excipient (not API)

## C18 alcohol at RT:

White granules or flakes

## Sources of C18 alcohol:

• Coconut & palm kernel oil

# **Specs & Compositions: Commercial Cetearyl Alcohol**

| Parameter                                               | Cetearyl Alcohol<br>NF (70:30) | WILFAROL 1618<br>(50:50) | WILFAROL 1618<br>(30:70) |
|---------------------------------------------------------|--------------------------------|--------------------------|--------------------------|
| Specifications:                                         |                                |                          |                          |
| Acid value (mg KOH/g)                                   |                                | 0.1 max                  | 0.1 max                  |
| <ul> <li>Saponification value (mg<br/>KOH/g)</li> </ul> |                                | 1.0 max                  | 1.0 max                  |
| Iodine value (% I2 absorbed)                            |                                | 1.0 max                  | 1.0 max                  |
| Hydroxyl value (mg KOH/g)                               |                                | 210-225                  | 210-225                  |
| Composition:                                            |                                | Most popular!            |                          |
| Fatty alcohols                                          |                                | 99% min                  | 99% min                  |
| • C16                                                   | ~ 70%                          | 45-55%                   | 22-32%                   |
| • C18                                                   | ~ 30%                          | 45-55%                   | 66-76%                   |
| • C12, C14                                              |                                | 3 max                    | 3 max                    |
| Others                                                  |                                | 3 max                    | 3 max                    |
| Moisture                                                |                                | 0.1 max                  | 0.3 max                  |



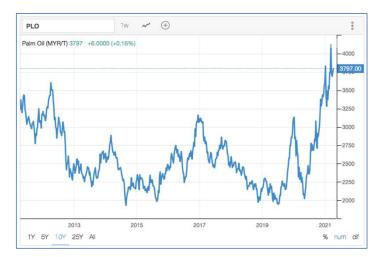
Source: https://heess.all.biz/en/cetylstearyl-alcohol-5050-and-3070-g8266275

# The Opportunity: Microbial Cetearyl Alcohol

Cetearyl alcohol is a well known and accepted ingredient in cosmetics and personal care, pharmaceuticals and food industries with an established market demand and a stable industry landscape (with end-product manufacturers and raw material suppliers). Wholesale price realization of cetearyl alcohol is a minimum of Rs 110-150/kg and go up to Rs 5000/kg

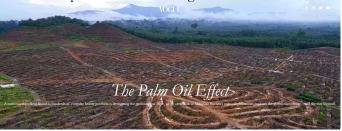
# The key drivers for *microbial production of Cetearyl alcohol* are:

- Desire to reduce plant sources like palm oil to *reduce deforestation* and loss of tree cover; Position this as a value for customers especially in the specialty cosmetics and personal care space where customers place a premium on environmental sustainability and natural products.
- Desire to avoid animal sources or synthetic sources
- Desire to reduce risks of price fluctuations related to palm oil trading dynamics
- Desire to get the Cetearyl Alcohol in a clean, *environmentally safe process* without use of harmful chemicals or heavy metals as catalysts.


# The mega trends



Articles / Sharing beauty with all / Achieving "zero Deforestation"


L'Oréal has set very ambitious targets leading to a sustainable transformation of its entire business and value chain. One of these targets is a "Zero Deforestation Policy", published in 2014.

Zero Forestation Policy of L'OREAL https://www.loreal.com/en/articles/sharing-beauty-with-all/achieving-zero-deforestation/



Price fluctuation in Palm Oil prices https://tradingeconomics.com/commodity/palm-oil

A common ingredient found in hundreds of everyday beauty products is devastating the environment.



# Who should be interested and why?

| Who?                                                                                                                      | Why?                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturers of cosmetic, personal care,<br>pharmaceutical (lotions, creams), food<br>products that use cetearyl alcohol | <ul> <li>New value proposition for customers</li> <li>Source of competitive edge</li> </ul>                                                 |
| Manufacturers of cetyl and stearyl alcohol                                                                                | <ul> <li>New grades of cetearyl alcohol to meet<br/>needs of buyers</li> <li>Source of competitive edge</li> </ul>                          |
| Manufacturers of bio-synthesized value added chemicals                                                                    | <ul> <li>New products and forays into new markets</li> <li>Opportunity for startups to disrupt markets &amp; displace incumbents</li> </ul> |

# About the technology

# **Process features:**

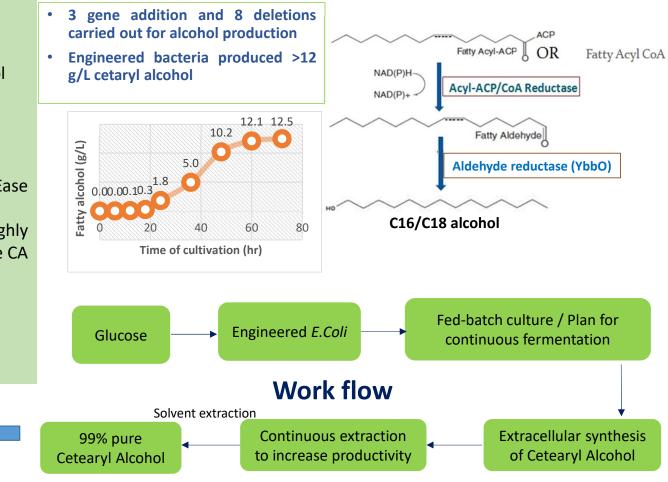
**Product features** 

By products -- minimal

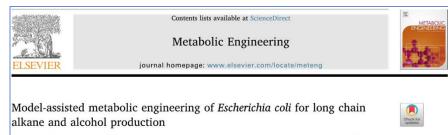
- Bioengineered E.coli for production of CA
  - Novel method for synthesis of cetearyl alcohol using fermentation technology -> Renewable source
  - Carbon source: Glucose -> Environmental friendly and sustainable

Highly (99%) pure form of Cetearyl alcohol

Expected yield: 10-15%


> 85% Cetearyl Alcohol

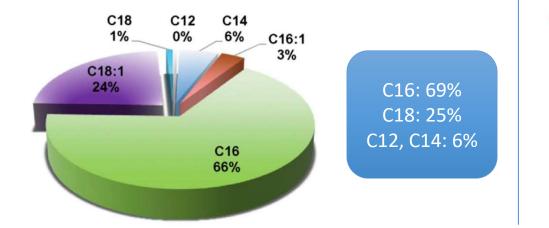
increased to 200.


Current OD: 30/40; expected to be

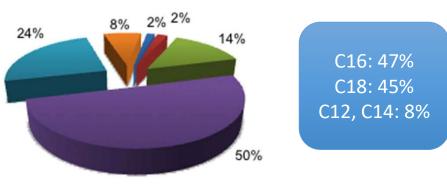
- ◆ Extracellular synthesis of cetearyl alcohol → Ease of extraction
- Uniform and consistent product quality 
   Highly
   pure CA

# Microbial engineering to produce alcohol




# **Illustrative Cetearyl alcohol compositions demonstrated**




Zia Fatma<sup>a,c</sup>, Hassan Hartman<sup>d</sup>, Mark G. Poolman<sup>d</sup>, David A. Fell<sup>d</sup>, Shireesh Srivastava<sup>b,c</sup>, Tabinda Shakeel<sup>a,c</sup>, Syed Shams Yazdani<sup>a,c,+</sup>

<sup>a</sup> Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
<sup>b</sup> Systems Biology for Biolud Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
<sup>c</sup> DBT-I-GEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
<sup>d</sup> Dearment of Biological and Medical Sciences, Oxford Brooks: University, Oxford, UK





#### ■C10 ■C12 ■C14 ■C16 ■C18:1 ■C18



# **Current status**

## **Technology status:**

- Demonstrated at lab scale; 5 L fermenter
- Patent protected

#### Patents:

- Priority document: 4260/DEL/2015 (23 Dec 2015)
- Coverage: IN
- Status: FER Response Submitted (Application Pending)

## **Publications:**

- Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in *E. coli*. Zia Fatma, Kamran Jawed , Anu Jose Mattam , Syed Shams Yazdani, Metab Eng 37 (2016), 35-45.
- Model-assisted metabolic engineering of *Escherichia coli* for long chain alkane and alcohol production. Zia Fatma, Hassan Hartman, Mark G Poolman, David A Fell, Shireesh Srivastava, Tabinda Shakeel, Syed Shams Yazdani, Meab Eng 46(2018), 1-12

# **Team & organization**



#### Lead Scientist: Dr Syed Shams Yazdani

- **Coordinator** of the DBT-ICGEB Centre for Advanced Bioenegry Research, ICGEB, Delhi
- **Group Leader**, Microbial Engineering Group, , ICGEB, Delhi

**Expertise:** Microbial Engineering, Synthetic Biology, Biofuels





- Established under UNIDO in 1983, the ICGEB is a unique, autonomous, Intergovernmental Organisation, with biotech labs in Italy, India, and South Africa.
- DBT-ICGEB Centre for Advanced Bioenergy Research was established in March 2012
- Key assets and strengths of Dr Shams Lab:
  - 10 Indian patents filed , 3 granted US patents, 1 granted China patent; More than 60 publications in biofuels, fatty alcohols from non-crude carbon source.
  - Team strength: 58
  - Well equipped labs and analytical facilities
    - 20 L fermenter facility for validation
    - Mass Spectrometer
    - Multi vessel fermentation system
    - ◆ HPLC and Gas chromatography
  - ◆ Industry Project /Tech transfer
    - Project undertaken with various oil companies
    - Enzyme based technology Transferred and scaled-up

# **Next Steps**

- The team has developed the background science, demonstrated lab scale processes and proof-of-concept. The team understands how the process can be modified to get desired products.
- The next phase will be to work closely with industry partners to
  - Define techno-commercial specifications for the product and process of interest.
  - Optimize process to meet industry requirements
- Scale-up, further optimization to meet end-customer needs, testing and certifications.

# Seeking:

- Industrial partners interested in technology licensing
- Industrial partners interested in sponsoring further technology advancement and scale-up
- Industrial partners interested in raising 3<sup>rd</sup> party funds for a collaborative project.
- Industry interested in tapping scientist capabilities as an expert/ consultant.
- Startup founders who leverage the core capability to identify many more market opportunities in a) cosmetics & personal care products segment, b) synthetic biology companies







For more information, contact:

Pradnya Aradhye pradnya@venturecenter.co.in +91-88050-09010

TechEx.in is a Regional Tech Transfer Office supported by:



# **References> Market data**

- 1. <u>http://www.thegoodscentscompany.com/data/rw1298331.html</u>
- 2. <u>https://www.openpr.com/news/2104626/cetearyl-alcohol-market-2020-global-market-size-share</u>
- 3. https://www.maximizemarketresearch.com/market-report/global-cetearyl-alcohol-market/86165/
- 4. <u>https://www.researchandmarkets.com/reports/4514895/global-cetyl-stearyl-alcohol-market-trends</u>
- 5. https://www.marketdataforecast.com/market-reports/asia-pacific-cetyl-stearyl-alcohol-market
- 6. https://www.persistencemarketresearch.com/market-research/cetostearyl-alcohol-market.asp
- 7. https://www.acme-hardesty.com/product/ahcohol-1618-cetyl-stearylcetearyl-alcohol/
- 8. https://acmehardesty.wpengine.com/wp-content/uploads/AHCOHOL-1618-TA-Spec-Pastilles.pdf
- 9. <u>https://www.wilmar-international.com/oleochemicals/products/personal-care/detail/cetyl-stearyl-alcohol-(50-</u>50)
- 10. https://heess.all.biz/en/cetyl-stearyl-alcohol-5050-and-3070-g8266275